Nous étudions des modèles de graphes aléatoires spatialement explicites permettant de reproduire les interactions à courte et longue distance constatées empiriquement dans les mouvements commerciaux d'animaux. Nous nous plaçons dans le cadre des réseaux scale-free percolation (SFP), qui combinent une inhomogénéité intrinsèque des nœuds avec un aléa dépendant de leur distance géographique. Une étude théorique est faite pour établir rigoureusement des relations générales entre les propriétés génératives du réseau (distance géographique et relations commerciales) et les caractéristiques des processus épidémiques qui s'y propagent. Nous combinerons ensuite les données de mouvements d'animaux avec des informations géographiques de haute résolution (SIG) pour aboutir à une représentation spatialisée des réseaux commerciaux d'animaux d'élevage permettant la calibration des modèles de graphes étudiés et l'étude de scénarios épidémiques variés.